Distinction within prokaryotes, formingthe primary taxonomic division within them, which is supported by both molecular sequence data and morphological features, is of the monoderm prokaryotes (Monodermata, i.e., those bounded by a single cell membrane) and the diderm prokaryotes (Didermata, i.e., those bounded by inner and outer cell membranes defining a periplasmic compartment). In that sense, b
Sp70 (Fig. 26) and Hsp90 (Fig. 31) also contain several unique sequence signatures not found in any prokaryotic homologs. These signature provides evidence that all of the eukaryotes are derived from a single ancestor and that the postulated fusion event was unique.VOL. 62,PHYLOGENY OF PROKARYOTES AND EUKARYOTEScluding amitochondriate and aplastidic cells, received major gene contributions to the
Sp70 (Fig. 26) and Hsp90 (Fig. 31) also contain several unique sequence signatures not found in any prokaryotic homologs. These signature provides evidence that all of the eukaryotes are derived from a single ancestor and that the postulated fusion event was unique.VOL. 62,PHYLOGENY OF PROKARYOTES AND EUKARYOTEScluding amitochondriate and aplastidic cells, received major gene contributions to the
Sp70 (Fig. 26) and Hsp90 (Fig. 31) also contain several unique sequence signatures not found in any prokaryotic homologs. These signature provides evidence that all of the eukaryotes are derived from a single ancestor and that the postulated fusion event was unique.VOL. 62,PHYLOGENY OF PROKARYOTES AND EUKARYOTEScluding amitochondriate and aplastidic cells, received major gene contributions to the