E signature sequences in different proteins support the division of Archaebacteria into two distinct groups (Euryarchaeota and Crenarchaeota) and of gram-positive bacteria into at least two groups, corresponding to the low-G C and high-G C species, of which the high-G C group is specifically related to the diderm prokaryotes. The DeinococcusThermus group of species appears to be intermediate in th
E signature sequences in different proteins support the division of Archaebacteria into two distinct groups (Euryarchaeota and Crenarchaeota) and of gram-positive bacteria into at least two groups, corresponding to the low-G C and high-G C species, of which the high-G C group is specifically related to the diderm prokaryotes. The DeinococcusThermus group of species appears to be intermediate in th
Ents was preceded or accompanied by duplication of the genes for the chaperone proteins (Hsp70, Hsp90, DnaJ, etc.), which are necessary for protein transport and communication within the compartments. The transfer of the genome from the gram-negative eubacterium to the newly formed nucleus and an assortment and integration of genes from the two partners led to the formation of the ancestral eukary
Oteobacteria). The evolutionary history deduced here based on signature sequences in some of the most highly conserved protein sequences in the biota is in contrast to the rather confusing picture that seems to be emerging from other analyses of the completed bacterial genomes (21, 50, 68, 130, 143, 144, 182, 191, 255). However, as has been pointed out (50, 143, 144, 182), of the large number of s
Oteobacteria). The evolutionary history deduced here based on signature sequences in some of the most highly conserved protein sequences in the biota is in contrast to the rather confusing picture that seems to be emerging from other analyses of the completed bacterial genomes (21, 50, 68, 130, 143, 144, 182, 191, 255). However, as has been pointed out (50, 143, 144, 182), of the large number of s
Oteobacteria). The evolutionary history deduced here based on signature sequences in some of the most highly conserved protein sequences in the biota is in contrast to the rather confusing picture that seems to be emerging from other analyses of the completed bacterial genomes (21, 50, 68, 130, 143, 144, 182, 191, 255). However, as has been pointed out (50, 143, 144, 182), of the large number of s
Oteobacteria). The evolutionary history deduced here based on signature sequences in some of the most highly conserved protein sequences in the biota is in contrast to the rather confusing picture that seems to be emerging from other analyses of the completed bacterial genomes (21, 50, 68, 130, 143, 144, 182, 191, 255). However, as has been pointed out (50, 143, 144, 182), of the large number of s
Distinction within prokaryotes, formingthe primary taxonomic division within them, which is supported by both molecular sequence data and morphological features, is of the monoderm prokaryotes (Monodermata, i.e., those bounded by a single cell membrane) and the diderm prokaryotes (Didermata, i.e., those bounded by inner and outer cell membranes defining a periplasmic compartment). In that sense, b